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Abstract 

PCA and SPC were used to identify data variables that trigger flooding and assess flood risk in the 
Muda River basin. Three (3) hydrologic variables, RL, WL, and SF, are analyzed using correlation 
tests, PCA and SPC. The Pearson correlation test shows SF and WL have significant correlations. 
The PCA indicates that all hydrologic variables are significant. The SPC shows ideal flood control 
values for the Muda River basin. The runoff value exceeding the UCL increases flood risk. The rapid 
expansion of development and anthropogenic activities have caused heavy rainfall and hydrologic 
variables to increase above normal levels. 
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1.0 Introduction 
A flood study is an ongoing concern in the Sustainable Development Goals (SDGs) studies 
in Yan Kedah, Malaysia. The Sustainable Development Goals (SDGs) are a set of goals 
that aim to create a more sustainable future. One of the SDGs is to make cities and human 
settlements inclusive, safe, resilient, and sustainable. However, one of the challenges is 
the risk of flooding. Flooding is a common environmental hazard that causes loss of life, 
property, infrastructure, and financial resources. The number of people at risk from 
devastating floods will continue to increase due to massive urbanization and population 
growth in flood-prone areas. The risk of flash floods in the Muda River basin in northern 
Malaysia usually occurs during the northeast and southwest monsoons. The rainy season 
from November to February is known as North-East Monsoon. The relatively drier weather 
with minimal monthly rainfall in Peninsular Malaysia experiences the Indian Ocean's 
Southwest Monsoon from May to August. During the monsoon transition seasons from 
September through November, most of the state receives average monthly rainfall during 
the changeover between monsoons (Julien et al., 2010). More frequent rainfall events due 
to climate change occurred on August 18, 2021, resulting in six human life losses. Follow 
by. a second deluge on September 28, 2021, was no less terrifying, though no fatality rate 
was recorded. The third event on October 20, 2021, the flash floods in Yan considerably 
caused damage to infrastructure and property (Berita Harian, 2021). 

The irregular distribution of severe rainfall in the area caused the river to overflow and 
crash with the tide, causing Yan's August 18, September 28, and October 20 flash floods, 
according to KASA (Bernama, 2021). The August 18 rainstorm accounted for 60% of the 
month's average rainfall (Berita Harian, 2021). Conditions in the Yan River basin and rough 
topography lead air condensation to climb faster and cool off more quickly, forming 
orographic clouds that form rainfall. Climate change and human activity may cause more 
frequent heavy rains. The Ministry of Energy and Natural Resources (KeTSA) stated that 
there had been no logging in the Gunung Jerai Forest Reserve for 30 years after the region 
was gazetted as a Protection Forest (Geopark Jerai) in 2018. Chan Ngai Weng, a water 
expert at Universiti Sains Malaysia, claimed that floods occur due to climate change and 
human activities, including forest clearing, construction, agriculture, and converting virgin 
forests into developed areas (The Vibes, 2021).  

Flood disaster resilience and sustainable development are the main focus in the 
environment that aims to the societal lives healthy and safe. For this reason, three 
hydrological parameters at two hydrological stations near Muda River are studied to 
determine the cause of floods in Kedah. The Chemometric Analysis is used in this study as 
it is a straightforward approach and gives significant findings. This technique classifies 
which elements that affect the other variables in the study. The Principal Component 
Analysis (PCA) correlation test determines the significant hydrological variable contributing 
to the flood occurrence. Statistical Process Control (SPC) is used to analyze the movement 
of flood risk patterns for each hydrological parameter as an early assessment for flood 
warning systems. The PCA and SPC are used to analyze and monitor the control limit for 
each PCA-derived parameter. Due to a prominent component causing flooding in Kedah, 



Jaafar, J., et.al. / Asian Journal of Environment-Behaviour Studies (ajE-Bs),8(24) Jan / Apr 2023 (pp.31-49) 
 

33 

the rainfall data and primary forest loss areas are studied to determine the main reason for 
the event.  
 
 

2.0 Literature Review  
 
2.1 Factors Contributing to Increasing Flood Risk 
Most flash floods are caused by short-lived, severe thunderstorms (usually 6 hours or less). 
Rainfall can cause flash floods. A rainfall distribution is needed to study flooding. Floods 
are caused by heavy rainfall, river overflow, and the South China Sea surges (DID, 2010). 
When it rains, rivers that store and release water affect their watersheds. Rain causes 
flooding. When rain falls upstream, it is more challenging to reach the flood stage 
(Kamarudin et al., 2015). Malaysia is humid, where land-sea interactions are very harsh. 

Rapid urbanization, conflicting land use, and population growth cause calamities. 
Flooding in Batman, Turkey, has reached catastrophic levels due to human effects on the 
environment, causing loss of life and property (SUKAR & TOBUL, 2011). Unzoned public 
institutions, infrastructure, and residential, commercial, and agricultural operations caused 
floods (Zaidee et al., 2018a). According to Berita Harian (2021), a nearby river's rapid 
expansion and flow ruined many resorts and waterfalls. Insufficient flow to the estuary and 
ocean hinders drainage and rivers. Sediment and debris block rivers and floodplains, 
reducing drainage capacity. This means rainwater will not be absorbed and will overflow 
into rivers and drains. Climate change could increase rainfall. Global warming will increase 
flood risk because water covers 70% of the planet. Human activity influences river basin 
ecosystems and drainage, whether directly or indirectly. 
 
2.2 Effects of Flooding 
Flooding damages lives, property, and infrastructure. According to Talbot et al. (2018), 
flooding disrupts public services too. Direct and indirect flood damages exist (Bubeck et al., 
2017). Direct impacts are more accessible to predict than indirect ones. Direct losses result 
from floodwater's physical contact with people and damageable property. Indirect losses 
may be as or more significant than direct ones. Effects on urban human settlements vs 
rural agricultural fields differ. Flooding on farmland can ruin crops (Talbot et al., 2018). 
Floods can damage the ecosystem, especially if pollution sources are nearby. Adding or 
releasing contaminants into the atmosphere causes most pollution. Human-caused 
pollution can harm water bodies (Zeleáková et al., 2016). Farmland fertilizers can leach into 
groundwater as an unintended side effect. There are other adverse effects, such as 
reduced fish production due to pollution and habitat loss. 

Floods also preserve ecosystem processes and biodiversity in many natural systems. 
They also recharge groundwater, fill wetlands, connect aquatic habitats, and convey 
sediment and nutrients to the ocean. Floods help species breed, migrate, and disperse. 
Natural systems may resist even devastating floods. Floods boost fish production, recharge 
groundwater, and preserve recreational areas (Svetlana et al., 2015). 
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2.3 Hydrological Parameters Approach 
Some aspects of flood control, irrigation, drainage, and dams rely on rainfall, particularly in 
the early planning and building stages. At various time scales, rainfall is the primary source 
of flood discharge and plays a part in the flood-receding process. If there is much rain, the 
daily streamflow (and water level) may drop quickly (Cheng et al., 2021). DID has set up a 
nationwide network of rain gauges to track the amount and distribution of rain. Rainfall is a 
significant factor in the development of irrigation water resources. Rainfall is an important 
factor in urban drainage and flood control planning. According to Reddy & Reddy (2013), 
increased rainfall from a typhoon or front may result in catastrophic floods. Urban drainage 
data on short-term rainfall intensity and area distribution are crucial for large river basin 
flood simulations. 

The water level is one of the most often monitored quantities because it is vital in many 
applications. A real-time river flood warning system is needed in the Philippines, where 
flooding is regular (Collenn et al., 2020). The water level is a simple water factor. If a river's 
water level rises abruptly, panic and tragedy may ensue. According to Monjardin et al. 
(2021), a system that monitors river levels and predicts how they will rise after rainfall 
reduces evacuation and flood damage. River or stream gauge height shows the water level. 
Due to human activity like illegal logging, soil silt and suspended particles dissolve and 
enter waterways during rainy days. Because of shallower rivers and faster stream flow, 
rising water levels cause destructive floods (Abd Halim et al., 2018). 

It is vital to determine the stream's stage and discharge. Discharge is water flowing 
down a river or stream. Temperature, precipitation, and elevation affect the river and stream 
flow (Whitfield et al., 2003). According to Araujo (2017), streamflow fluctuations due to 
climate change have been the focus of many studies. If daily rainfall increases, too much 
surface runoff will be created since daily channel flow will likewise increase (Araujo, 2017). 
Streamflow monitoring can help manage climate-friendly water (Dobriyal et al., 2017). 
Changing streamflow due to rainfall and temperature must be communicated for computing 
semantics (Mughal et al., 2021). 
 
2.4 Flood Monitoring Warning System (FMWS) as A Mitigation Measure 
Disaster management officials employ several systems to monitor floodwater levels. 
Flooding is not the primary goal; it is to warn the public. It improves survival and reduces 
electronic damage. An early warning or real-time alerting system like this FMWS can help 
individuals know about the flood level that threatens their lives (Zakaria et al., 2021). Using 
moving range charts for each hydrological parameter, Statistical Process Control (SPC) 
can detect the likelihood of flooding. 

Volunteers can be trained as first responders in a crisis. Public address systems, such 
as sirens, must be set up in places of worship and shopping malls as a precaution because 
only some people are tech-savvy enough to get flood alerts online or on their cell phones. 
Security forces must be stationed in flooded areas to protect citizens' homes if they must 
evacuate. Flood victims want temporary housing for evacuees. Flood warning systems, 
such as local government monitoring control charts in SPC analysis, can be made more 



Jaafar, J., et.al. / Asian Journal of Environment-Behaviour Studies (ajE-Bs),8(24) Jan / Apr 2023 (pp.31-49) 
 

35 

effective, cost-efficient, and easy. SPC charts helped identify a flood risk pattern (Abd Halim 
et al., 2018). Visible peak surge Upper Control Limit (UCL), Control Limit (CL), Average 
Value (AVG), and Lower Control Limit (LCL) ensured no river parameter exceeded 
maximum capacity. When the maximum limit control is about to be reached, this system 
can warn local communities to prepare for floods, save important documents, and 
evacuate.  
 
 

3.0 Methodology  
This study is primarily quantitative, relying on the three years of recent hydrological data 
collected (2019-2021) from the Department of Irrigation and Drainage (DID). There are 
three (3) hydrological parameters, which are Rainfall (RL), Water Level (WL), and Stream 
Flow (SF), to be analyzed through the application of Principle Component Analysis (PCA) 
and Statistical Process Control (SPC). PCA and SPC tests were conducted through 
XLSTAT Base 2021 add-in software and Excel. In pre-processed data of PCA, Pearson's 
Correlation test is conducted to identify variables with a strong correlation between 
variables and then to determine the variables contributing to flooding based on load factors. 
Two types of hypothesis testing were employed to determine whether or not variables 
suitable for PCA factoring are suitable: Bartlett's Sphericity Test and Kaiser-Meyer-Olkin 
(KMO). Through SPC analysis, the control charts for each hydrological parameter 
represent the movement of flood risk pattern. The factors contributing to the flooding issue 
in Kedah could be justified through the comparison of statistics on primary forest loss areas 
in Yan, Kedah, obtained from the Global Forest Watch (GFW) Organization website (2019-
2021) and the rainfall data obtained from DID (2019-2021). 
 
3.1 Study Area 
 

Figure 1: The Topography of the Study Area at Muda River Basin 
(Source: National Water Balance System (NAWABS)) 
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The geology of the study area is at the coordinates of 5˚06'N and 100˚17'E, with a 
catchment area of 4,210 km2 and a length of 180 km. The three significant flash flood 
events occurred in 2021 at Yan, Gunung Jerai and the southern highland areas 
encountered as the areas that receive heavy yearly rainfall above 5,000 millimetres. Figure 
1 and Table 1 show the topography of the study area at the Muda River basin and the 
locations of monitoring stations at the Muda River basin. Secondary hydrological data, 
including Rainfall (RF), Stream Flow (SF) and Water Level (WL), were provided by the 
Department of Drainage and Irrigation (DID) from 2019 to 2021. 
 

Table 1: The Locations of Monitoring Stations at Muda River Basin  
Station No. Latitude Longitude Name of Station Parameters 

Site 5806066 5̊ 48’50N 100̊ 37’55E Jeniang Klinik Rainfall 

Site 5806414 5̊ 49’10N 100̊ 37’55E Sg. Muda di Jeniang Stream Flow 

Site 5806414 5̊ 49’10N 100̊ 37’55E Sg. Muda di Jeniang Water Level 

(Source: Department of Irrigation and Drainage (DID)) 

 
3.2 Statistical Analysis 

This study used statistical Analysis to determine the relationship between hydrologic 
parameters, RL, SF, and WL. Correlation tests were used to determine the fit of the 
variables. Principal component analysis (PCA), statistical process control (SPC) was used 
to determine the strongest loading factor significantly influencing flooding. In contrast, SPC 
determines the movement of the flood risk pattern per the control boundary. 
 
3.2.1 Correlation Test 
This study employed the Correlation test to find variables with a vital link for further 
Analysis. The test measures two variables with a relationship of -1 to 1. Pearson and 
Spearman coefficients can be utilized in this investigation, but Pearson was used 
consistently (Nor et al., 2018). This study was used to determine the strongest Correlation 
between hydrological data parameters and the strongest Correlation. A positive Correlation 
means both variables are increasing linearly, while a negative Correlation shows one 
variable increasing and the other declining. Pearson rank coefficient requires actual data 
and ratio-scaled variables. The correlation test was run using XLSTAT Base 2021 add-in 
software, and the following equation (1) was used: 

rp =
∑ (Xi−X̅)(Yi−Y̅)n

i=1

√∑ (Xi−X̅)2n
i=1 ∑ (Yi−Y̅)2n

i=1

               

(1) 
Where, 
r_p = Pearson Correlation Coefficient, 
X_i = Values of the x-variable in a Sample, 
X ̅ = Mean of the Values of the x-variable, 
Y_i = Values of the y-variable in a Sample, 
Y ̅ = Mean of the Values of the y-variable 
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3.2.1.1 Bartlett’s Sphericity Test 
Bartlett's Test of Sphericity compares a correlation matrix to the identity matrix. This test is 
typically carried out before we apply data reduction approaches such as Principal 
Component Analysis (PCA) or Factor Analysis to check that a data reduction technique can 
compress the data meaningfully (Academy, 2009). According to (Ayuni & Sari, 2018), the 
statistic test can be computed using this formula (2): 

X2 = − (s − 1 −
2p+5

6
) ln|R|               

(2) 
Where, 
s = Number of Samples  
p = Number of Variables  
R = Correlation Matrix of Variables 

 
3.2.1.2 Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 
The Kaiser-Meyer-Olkin (KMO) statistic, or called the Measure of Sampling Adequacy 
(MSA), is a statistic that examines whether other factors may explain correlations between 
variables in the data set. KMO and MSA threshold values are reported in Table 2 by 
statistician Kaiser (Al-Hashmi et al., 2014), who developed the metric. As a result, the KMO 
statistic should be used as the primary criterion for determining whether or not the data are 
suitable for Principal Components Analysis (PCA). If these measurements suggest that the 
variables are sufficiently associated, we can proceed with further investigation. KMO must 
have a value of at least 0.5 to be considered a viable factor in factor analysis. Otherwise, it 
should be omitted from consideration. The formula in (3) for calculating KMO is as follows: 

KMO =  
∑ ∑ rIJ

2

∑ ∑ rIJ
2+∑ ∑ aIJ

2         

(3) 
Where, 
rIJ = simple Correlation between i-th and j-th variable  
aIJ = partial Correlation between i-th and j-th variable 

 
 

Table 2: Threshold Values for KMO and MSA 

KMO/MSA value Adequacy of the correlations 

Below 0.50 Unacceptable 
0.50 – 0.59 Miserable 
0.60 – 0.69 Mediocre 
0.70 – 0.79 Middling 

0.90 and higher Marvellous 

(Source: An index of factorial simplicity." Psychometrika 39, no. 1 (1974): 31-36. (Kaiser, 1974))  

 
3.2.2 Principle Component Analysis (PCA) 
According to Nor et al. (2018), Principal Component Analysis can find significant variables 
in a small number of data sets (PCA). This method reduces the number of variables, 



Jaafar, J., et.al. / Asian Journal of Environment-Behaviour Studies (ajE-Bs),8(24) Jan / Apr 2023 (pp.31-49) 
 

38 

examines the structure or relationship between variables in hydrological data, and finds 
non-dimensionality in the theoretical construct. This study has multi-co-linearity, which 
means two or more variables are re-correlated. The PCA will find the most vital link between 
variables. This method visualizes the most and least essential metrics without losing much 
data (Zaidee et al., 2018b). Based on the data, it may be possible to identify which variables 
have the most significant impact on hydrological models in the Muda River basin. The 
following is the equation that was utilized in (4): 

Zij = ai1xj1 + ai2xj2 + ai3xj3 + aimx     

    (4) 
Where, 
Z = Component Score, 
a = Component Loading, 
i = Component Number, 
m = Total Variables, 
x = Measured of Variables 

 
3.2.3 Statistical Process Control (SPC) 
This method calculated the limits of all flood-causing variables in the Muda River basin. 
UCL, CL, or AVG, and LCL were shown on the control charts. A control chart's Sigma value 
falls within a particular data range. In the event of a variable, the UCL value is undesirable 
and high risk for floods (Saudi et al., 2018). This Analysis helped anticipate future 
hydrological modelling. Control charts can identify trends and patterns by showing how 
accurately data deviates from past baselines, indicating the best baselining and dynamic 
threshold, and capturing abnormal resource utilization. The following equations (5) and (6) 
were employed in this Analysis: 
 

Moving Range = Plot: MRt for t = 2, 3, … , n     
    (5) 

Where, 
MR = Average Moving Range, 
t = time, 
n = Individual ValuesZ = Component Score, 

Average Value: X̃ =
∑ xi

m
i=1

n
         (6) 

Where, 
X ̃ = Moving Range, 
n = Individual Values, 
xi = Difference Between Data Points 

 
 

4.0 Results and Discussions 
 
4.1 Analysis of Correlation Test  
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P-values were used to describe the rates of Correlation between the examined variables. 
In these results, the p-values for the Correlation between RF and SF, between RF and WL, 
and between SF and WL are different from 0 with a significance level alpha equal to 0.05, 
indicating a significant correlation between these variables. This finding is based on the 
correlation coefficient size and interpretation in Table 4. Table 3, reveals an insignificant 
correlation between RF and WL at 0.162, followed by SF at 0.091. WL and SF have a 
significant positive correlation of 0.899. Overall correlation test shows that WL and SF are 
highly correlated. According to prior research, a correlation coefficient of 0.7 or above 
indicates a substantial correlation and should be chosen for further Analysis (Nor et al., 
2018). 
 

Table 3: Threshold Values for KMO and MSA 

Variables Rainfall (RL) Stream Flow (SF) Water Level (WL) 

Rainfall (RL) 1 0.091 0.162 
Stream Flow (SF) 0.091 1 0.899 
Water Level (WL) 0.162 0.899 1 

Values in bold are different from 0 with a significance level of alpha=0.05 

 
Table 4: Threshold Values for KMO and MSA 

Size of Correlation Interpretation 

.90 to 1.00 (-.90 to -1.00) Very high positive (negative) Correlation 
.70 to .90 (-.70 to -.90) High positive (negative) Correlation 
.50 to .70 (-.50 to -.70) Moderate positive (negative) Correlation 
.30 to .50 (-.30 to -.50) Low positive (negative) Correlation 
.00 to .30 (.00 to -.30) Negligible correction 

Source: Statistic Corner: A guide to the appropriate use of Correlation coefficient in medical research (Campi 
et al., 1997) 

 
4.1.1 Bartlett’s Sphericity Test 
According to the Table 5 below, the correlation matrix is not an identity matrix (the null 
hypothesis has been rejected), as shown by a significant statistical test where the p-value 
(<0.0001) is less than the set significance level, alpha (0.050). The fact that the observed 
Chi-square value for Bartlett's test of sphericity was 1671.178 would suggest that the factor 
model is appropriate (P-value less than 0.0001). 
 

Table 5: Bartlett’s Sphericity Test 

Chi-square (Observed value) 1671.178 

Chi-square (Critical value) 7.815 

DF 3 

p-value (Two-tailed) <0.0001 

alpha 0.050 
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4.1.2 Measure of Sample Adequacy of Kaiser-Meyer-Olkin 
From Table 6, the value of KMO was discovered to be 0.495 or rounded to the nearest 
value of 0.5, which is an acceptable number and indicates that the correlation matrix can 
be used for factoring in PCA. According to Table 4,"Threshold Values for KMO and MSA”, 
a KMO value of 0.5, is considered miserable for the adequacy of the correlations. This is 
because there are relatively significant partial correlations compared to the sum of 
correlations. In other words, broad correlations could cause a problem for Principle 
Component Analysis (PCA). 
 

Table 6: Kaiser-Meyer-Olkin Measure of Sampling Adequacy 

Rainfall (RL) 0.412 

Stream Flow (SF) 0.497 

Water Level (WL) 0.497 

KMO 0.495 ≈ 0.5 

 
4.2 Results from Principle Component Analysis (PCA) 
This study applied PCA to RF, WL, and SF to establish the most discriminating parameter 
and the likely primary source of flooding in the Muda River Basin. Only the most vital 
analytical factor was used to create PCs (Zaidee et al., 2018b). Table 7 states that a factor's 
eigenvalue must be larger than 1.0 to be considered significant. Its high factor makes it a 
crucial analytical factor. Table 7 shows that F1, F2, and F3 each represent a Principle 
Component (PC). It "regroups" data into smaller components. This regrouping is based on 
RF, WL, and SF data. The initial variables' information is squeezed into the new variables 
(major components). This ordering of components maintains maximal diversity with a small 
number of newly created components. Instead of variables, investigate data with 
components. The most variable factor will be examined using each variable's data to 
determine the essential variable contributing to floods. 

Table 7 presents the eigenvalue after the initial PCA. The findings show that F1 (1.933) 
were gained as the eigenvalue, more than (>1.0), and that the variability percentage of this 
factor was 64.437%. Both F2 and F3 resulted in eigenvalue of less than (<1.0) with 0.968 
and 0.099, respectively. The proportion of both variances F2 and F3 are cumulatively less 
than the F1 at 32.275% and 3.288% consecutively. By regrouping the variables, the results 
show that the F1 component has the most variation. The F2 component has the second 
most variation, while the F3 component should have the least fluctuation. 
 

Table 7: Eigenvalues for Factors from PCA 

  F1 F2 F3 

Eigenvalue 1.933 0.968 0.099 

Variability (%) 64.437 32.275 3.288 
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Cumulative % 64.437 96.712 100.000 

Eigenvalues > 1.0 consider a selected factor  
(Source: Flood Risk Pattern Recognition In Rajang River Basin, Sarawak (Syafiqah et al., 2020a)) 

 
Table 8, shown factor loading result of WL with the highest value of 0.970 followed by 

SF with a value of 0.960. RF shown the largest impact of factor loading with a value of 
0.965.  
 
Table 8: Correlations between Factors and Variables in PCA from 2019-2021 in Muda River Basin 

 F1 F2 F3 

Rainfall (RL) 0.263 0.965 -0.018 

Stream Flow (SF) 0.960 -0.171 -0.220 

Water Level (WL) 0.970 -0.092 0.223 

Eigenvalue 1.933 0.968 0.099 

Variability (%) 64.437 32.275 3.288 

Cumulative % 64.437 96.712 100.000 

 

Figure 2: Correlations Circle between Factors and Variables in PCA 

 
Figure 2 shown the original 3 variables of Rainfall (RF), Water Level (WL) and Stream 

Flow (SF) are shown in red on this two-dimensional factor space within this two-dimensional 
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circle. A strong correlation exists when two red lines are pointing in the same direction (r 
close to 1), an orthogonal relationship exists when the lines are 90 degrees apart where no 
correlation occur (r close to 0), and a negative relationship exists when the lines are pointing 
in the opposite way or far from the center (r close to -1). In this correlation circle, it can be 
seen that the WL and SF have strong correlation between these two variables while RF 
have no correlation with any of the variables involved. 

 
Table 9: Factor Loadings after Varimax Rotation 

  VF1 VF2 

Rainfall (RL) 0.063 0.998 

Stream Flow (SF) 0.975 0.026 

Water Level (WL) 0.969 0.105 

Eigenvalue 1.933 0.968 

Variability (%) 63.130 33.582 

Cumulative % 63.130 96.712 

Values in bold correspond for each variable to the factor for which the squared cosine is the largest 
A cutoff value > 0.95 consider as a threshold for the above loading factor 

 

Figure 3: Factor Loadings Plot after Varimax Rotation 

 
According to Zaidee et al. (2018), only significant factor loadings were used to select 

the principal component (PC). Varimax factor (VF) was generated using the essential 
component in rotation (Syafiqah et al., 2020a). Factor loading findings must have an 
eigenvalue larger than 1.0 to be considered significant. Cross-loadings make early 
extraction factors challenging to interpret. Orthogonal factor rotation simplifies the study's 
results. Varimax is a column-based method for maximizing pattern structure coefficient 
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squared differences, which can rotate orthogonally. Shrestha (2021) states rotating PCs 
yield varimax factors (VFs). Rotation enhances extraction-induced high and low loads. 

Table 9 and Figure 3 show a significant factor loading for SF and WL with values of 
0.975 and 0.969, respectively. RF (0.714) exhibited a favorable moderate factor loading in 
VF2 with an eigenvalue of 0.968 and a variance of 33.582 %. Syafiqah et al. (2020b) 
excluded PCA with eigenvalues less than (1.0). Final PCA results after Varimax rotation 
demonstrate that SF contributes to flooding. 
 
4.3 Results from Statistical Process Control (SPC) 
The flood control warning system uses SF as its primary parameter. The correlation 
coefficient between the SF and other variables, such as WL and RF, shows that SF is the 
highest and most feasible for use in the flood control warning system. The variable is the 
most dynamic and should be used as the primary parameter in the flood warning system. 
Table 9 shows the results of Statistical Process Control (SPC) for all variables at Muda 
River Basin. 
 

Table 9: Results of Statistical Process Control (SPC) for Muda River Basin 

Area 
Points 
Plotted 

Lower 
Control Limit 

(LCL) 

Average 
Limit (AVG) 

Upper 
Control 

Limit 
(UCL) 

Limit 
Sigma 

Sample Size 

Stream Flow Individual -58.698 m3/s 19.567 m3/s 
97.831 

m3/s 
Moving 
Range 

1 

Water Level Individual 19.202 m 20.998 m 
22.793 

m 
Moving 
Range 

1 

Rainfall Individual -33.031 mm 6.416 mm 
45.863 

mm 
Moving 
Range 

1 

 
 

 
Figure 4: SPC Result for Muda River Basin’s Stream Flow 
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In Figure 4, SF is an essential component of floods, and data beyond the UCL are at 
significant risk of flooding that might devastate the stream bank. All values below the LCL 
indicate drought or minimal flood risk. These findings are essential for enhancing Muda 
River Basin's flood early warning system. SF peaks at 227 m3/s in November 2020. Heavy 
rain in this month led the WL in low-lying areas or near the river to rise one to two metres 
(NST, 2020). Kedah's rainy season lasts from April to November. The bulk of the spikes 
that occurred over the years showed a high value of SF in the study region, which was 
caused by changes in the stream's characteristics and runoff from precipitation along the 
stream (Zaidee et al., 2018b). 

Figure 5 shows that the WL peaked in November 2020 at 24.13 metres. The higher 
peak value showed that human activities had impacted water storage since the stream had 
been widened, raising the WL. Both WL level and SF peak simultaneously due to their 
significant correlation. Increasing WL increases Muda River SF. SF is often calculated from 
WL data using a rating curve (Fentaw et al., 2019). SFs and WLs are utilized to produce 
the rating curve, which involves a huge number of measurements over a lengthy period 
(concurrent SF and WL data sample is termed gauging). 

 
 

Figure 5: SPC Result for Muda River Basin's Water Level 

 
 
Figure 6 shown similar rainfall trends, with a peak of 103.500 mm in September 2020. It 
was considered an anomaly, not a usual occurrence. The Muda River basin's monthly, 
yearly, and monsoon rainfall patterns varied greatly. March, April, May, June, July, August, 
September, October, November, and December are the rainiest months. The Muda River's 
catchment basin floods frequently around April to May and September to November, 
causing near-annual flooding (Ghani et al., 2010). In 30 years, Kedah's central region, 
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comprising Kota Setar, Pendang, Yan, Kuala Muda, and Sik, is expected to receive more 
rain (2010 to 2039). The average amount of rain will likely stay the same 
 

Figure 6: SPC Result for Muda River Basin’s Rainfall 
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Figure 7: Correlation Between Year (2019-2021) with Rainfall and Primary Forest Loss Data 
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According to Grosso (2021), all forest regions preserve and contribute the most humidity to 
the atmosphere. This mechanism increases rainfall as air flows over the forest. Rainfall 
levels reduce due to deforestation. From Figure 7, the cause of floods can be justified by 
comparing rainfall data and primary forest loss areas data. Flooding may be natural when 
rainfall data is higher than in primary forest loss regions. Otherwise, forest loss indicates 
human-caused flooding. Deforestation via agricultural expansion, wood exploitation (e.g., 
logging or wood extraction for house fuel or charcoal), and infrastructural expansion (road 
building and urbanization) are human activities. 

In 2019, primary forest loss was 1 hectare, and yearly rainfall was 5.953 mm. In 2020, 
fewer human activities caused 0.153 hectares of primary forest loss, while rainfall readings 
increased from 6.928 mm to 9.799 mm. Primary Forest loss areas were 7 hectares in 2021. 
This shows active deforestation this year (2021), causing rainfall levels to be lower than the 
recorded primary forest loss regions. 
 
 

5.0 Conclusion 
Three hydrological parameters, RF, WL, and SF are used in flood risk models. To ensure 
the collected variables can be used for Principle Component Analysis (PCA), a Correlation 
test is conducted using Bartlett's Sphericity test and Kaiser-Meyer-Olkin (KMO) test. In both 
hypotheses tests, the p-value for Bartlett's test is below 0.05 (0.0001), deemed significant, 
while the KMO value is roughly 0.5, an acceptable result for PCA factoring. Therefore, this 
study has proved the capacity to employ RF, WL, and SF data in flood risk models. In PCA, 
the first procedure is to analyze the factors' eigenvalues, in which the factor had to be more 
than 1.0 (>1.0). The result of F1 is chosen since it shows the highest variance (64.43%) 
compared to F2. In the second step, the Correlation between factors and variables is 
analyzed, where in F1, SF (0.960) and WL (0.970) are regarded as substantial loading due 
to coefficients being more than 0.7. Varimax rotation has simplified the study's results. The 
result of Varimax showed that SF contributed mainly to the occurrence of floods in the Muda 
River basin beside RF and WL. For the Basin River in Malaysia, the statistically proven 
variables can be utilized to highlight flood patterns and the suitable rates for maximum flood 
management (Saudi et al., 2018). This study has shown that the most critical variables 
identified are valid to determine the flood alert warning system for risk models. 

The result from the SPC analysis can improve the Muda River Basin's flood warning 
system. The SPC analysis showed that most variables exceeded the Upper Control Limit 
(UCL), which determines the risk factor pattern of the chosen variable. The control limit 
developed as a result of this study allows the early response actions to be implemented 
based on the river basin SF levels. Early warning systems can be made more robust and 
precise based on the present pattern formation in floods. The economic sector can benefit 
from a control limit system in preparation for flood and drought events. Rice farming is an 
important source of revenue and food security in the Muda River Basin; thus, the water 
supply must be sufficient to meet the demand for a sustainable environment. Study through 
integrating Chemometric Technique through Factor Analysis, Factorial Method and Time 
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Series Analysis, the primary cause of a flood is determined. The limitation system can 
measure the effectiveness of installing a warning system. SPC charts helped detect the 
flood risk trend. The UCL, LCL, and AVG ensured no parameters exceeded the river's 
maximum tolerance.  

The comparison of Rainfall and Primary Forest Loss Areas from 2019 to 2021 indicates 
that in 2021 there is active deforestation in Yan, clearing 7 hectares. This action causes 
the lower result of RF levels than in primary forest loss areas. The flooding crisis occurred 
thrice in 2021, causing substantial property damage. News reported abnormally heavy 
rainfall causes an increase in the runoff, thus causing rivers to overflow and floods to occur. 
The main ultimate reason is also due to deforestation in this area. Deforestation in tropical 
rainforests could impact the planet's climate and biodiversity (Rhett A. Butler, 2019). The 
event occurs during the rainy season, and the loss of forest cover increases runoff into 
streams, rising river levels and triggering flooding downstream in the study area. Loss of 
trees with anchoring roots worsens erosion in the tropics. Heavy tropical rains carry forest 
runoff into streams and rivers. For the well-being of societies to be achieved, it is crucial to 
protect the environment from the natural disaster. Conserving forests is a solution to 
environmental degradation.  
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